CHIROPTERAN NOTES

By livib Anderses

The bats described or commented upon in this paper were sent to me for inspection or identification by Marquis Giacomo Doria, Director of the Genoa Civic Museum, during the latter half of the year 1906 . Duplicates of some of the forms have kindly been ceded by Marquis Doria to the British Museum.

The principal points of interest to specialists may be these:
a species of Mormopterus (M. doriae) from Sumatra, helonging to a section of the genus hitherto known from the Malagasy region and Southeast Africa only (p. 19);
a second specimen of Chaerephon johorensis, showing the range of the species to extend to Sumatra (p. 39);
a second and third specimen of Hipposiderus schneideri from Sumatra (p. 21);
a hitherto undescribed species of Myotis from the Andamans (.M. dryas), apparently allied to M. adversus (p. 37);

Hipposiderus lankadiva, hitherto known from Ceylon only, now recorded from Burma (p. 9);

Engano individuals of Hipposiderus diadema, constituting a separate race ($H . d$. enganus) with closer affinities to the continental than to the Sumatran race (p. 8);
examples of Hipposiderus diadema from Tenasserim and the Malay Peninsula apparently referable to Dobson's "Phyllorthina masoni" (p. 6);
examples of Hipposiderus caffer referable to Cabrera's recently described "H. tephrus", showing this form to be of wide distribution in Africa north of the Congo Basin (p. 12);
examples of Hipposiderus caffer from San Thome and Prince's Island, Gulf of Guinea, showing the race inhabiting thess outlying islands to be the same as the continental H. c. guineensis (p. 17);

Rhinolophus macrotis, hitherto known from the Himalayas only, now obtained in sumatra, the individuals, however, differing slightly so as to constitute a distinct race, Rh. m. dohrni (p. 29);
a distinct race of Rhinolophus eurgotis from the Aru Islambs (IRh. e. aruensis), markedly different from that of the noighhouring Key Islands (p. 3i));

Rhinolophus slheno and refulgens, hitherto known from the Malay Peninsula only, now obtained in Sumatra (p p. 2/, 2 (6);

Rhinolophus truncatus, hitherto known from Batchian only, now recorded from Ternate (p. 23).
six of the forms dealt with in this paper were collected hy Dr. H. Dohrn in Sumatra. Of these two were new: Mormopterus doriae and Hipposiderus macrotis dohrni; three were known from the Malay Peninsula, but not from Sumatra: Chaerephon johorensis, Rhinolophus stheno, Rlinolophus refulgens; two were litherto known from the single type specimens only, respectisely in the Calcutta Museum and the British Museum: Chaerephon jchorensis, Hipposiderus schneideri.

An "Index of the technical names " of all the forms mentioned in these Notes is found on pp. 1/4, 侅.

1. Hipposiderus diademia niasoni, Dobs.

1872. Phyllorhina Masoni, Dobson, Journ. As. Soc. Bengal XLl. pt. II. p. 338. - Type locality: Moulmein, N. Tenasserim.
1873. Phyllorhina diadema, subsp. a, masoni, Dobson, Monogr. As. Chir. pp. 62, 202.3. - Brief description, and text-figure of head in front view.
1874. Phyllorhina diadema var. o?, Dobson, Cat. Chir. Brit. Mus. p. 138.
1875. Dobson's « Ph. masoni »; Knud Andersen, Ami. © Mag. N. II. (i) XVI. p. 500, footnote (l Nov. 1905). - Remarks on the second specimen («b») recorded below.
a. 9 ad. (in alc.). Meatan, Valley of the river Houn-daraw, Tenasserim: April 1887. Collected by Sr. Leonardo Fea. Genoa Museum.
b. Ad. (skin). Gunnong Prulai, Johore, Malay Peninsula; 7 March 1880. Collectel by W. havison; presented by A. (I. Hume. British Museum (no. 85.8.1.114).

The two II. diadema here refersed to Dobson's "Pleyllorhina masoni " may be bricolly characterised as follows: -
skull large and howily lmilt; facial portion resy broad: an-
teorbital width $9.8-10 \mathrm{~mm}$.; teeth large: maxillary row about $1: 3 \mathrm{~mm}$. External dimensions large: forearm $86.80-90.8^{\circ} \mathrm{mm}$. third metacarpal 6и.7-63.9 $\mathbf{n m}$.
II. d. masoni comes very near to H. d. diadema from Java and Timor, from which it differs only in the rather heavier skull, broader face and larger nosc-leaves. The two races can only be discriminated by average characters.

My reasons for identifying this peninsular race of H. diadema with "Pll. masoni" - hitherto known from a single specimen, obtained at Moulmein, Tenasserim, and preserved in the Calcutta Museum - are these: - According to Dobson, who at first (1872) regarded Ph. masoni as a quite distinct species, it differs from II. diadema in two respects: - " The concave front surface of the base of the transverse nose-leaf is divided into two cells only by a single central longitudinal fold "; and "from the under surface of the symphisis of the mandible a small conical hony process projects downwards, about equal to the lower canine tooth in rertical extent ». Later on (1876) Dobson put Ph. masoni down as a subspecies of $P h$. diaderra; and finally, in 1878 . he was evidently inclined to consider it an individual variety only.

Dobson was probably right in regarding the two characters on which he originally based Ph. masoni as individual aberrations. In H. diadema there are generally three vertical ridges on the front face of the posterior leaf, but the two lateral ridges are always less prominent than the central ridge, and in some specimens (irrespective of racial differences) ther are so much reduced as to be rather indistinct; the type of $P h$. masoni is probably an individual of this kind. As to the downwards projecting bony process from the symphysis of the mandible, I think there can be no doubt that this is a mere jndividual deformity. But when leaving these two "characters" ont of consideration, the whole original description of Ph. masoni is reduced to the following three facts: it is a bat of the $I I$. diadema type, of large size (forearm, according to Dohson, 8.0 mm .), and inhabiting Tenasserim and neighbourhood; in other words: it is the peninsular race of II. diadema.

The example obtained by Leonardo Fea is practically a topotype of Ph. masoni, Meetan being situated close east of Monlmein.

Some measurements of the two sperimens of $I I$. d. masoni are given on p. 9.
2. Aipposiderua diademat engranus, subsp. n.
1894. Itipposiderus diadema Geoff., Thomas, Ann. Mus. Civ. Genova (2) N1I. p. 108 (10 April 1894). - Kifa-juc, Engano: rerord of the first (" a ») of the specimens mentioned below.
a. It ad. (in alc.). Kifa-juc., Engano; 1891. Collected by Dr. E. Morligliani. Presented to the Britisl Museum by Marfuis (i. Doria (no. 6.12.1.2). Type of the subspecies.
b. δ^{7} ad. (in alc.). Bua-Bua, Engano; 1891. Collector and Lonor as above (B. M. no. 6.12.1.1).

Similar to $I I$. d. masoni, but with rather larger cars, broader horse-shoe, longer tibia, very broad facial portion of the skull, and very large teeth.

The skull of $H . d$. enganus is quite of the ordinary diadema shape; in size it comes nearest to the skulls of $I I$. d. masoni and $I I$. d. diadema. The facial portion is as broad as, or if anything still broader than, in masoni; in this respect H. d. engamus approaches I. euotis. In all other races of H. diarlema known to me the length of the maxillary tooth-row is from 11.313.2 mm . ; in the two examples of H. d. enganus it measures $13.3-1 / .2 \mathrm{~mm}$. - The ears are slightly larger than in any other race: width $28.3-28.8 \mathrm{~mm}$., as against $24.9-27 . .3$ in all other forms taken together; also in this respeet $I I$. d. enganus approatches II. euotis. The width of the horse-shoe, in all other races. is !) 11.2 mm .; in $I 1$. d. enganus $11.8-19.9 \mathrm{~mm}$. The lower leg, in seven H. d. diadema and masoni, measures 3Я.3-3.3.8 mm.; in two $I I$. d. enganus $36.3-38 \mathrm{~mm}$. The general size (forearm 88. 内 and 92 mm.) is as in II. d. diadema and masoni, if not larger. In one of the two specimens examined there is a minute fourth lateral leaflet, extermally to the third; a similar indication of a fourth leaflot I have seen occasionally in II. d. vicarius.
II. d. enganus is a well marked loal form of H. diadema. so well marked that already a first glanee on the (therge nosoleaves, large ears, large genemal size) gave me the impression that it was rather different from any of the races desoribed in my paper on II. diadema; hut it camnot be separated as a distinct
species; there is absolutely no structural difference betwen $I I . d$. enganus and the other races; all the points enumerated above indicate only differences of degree, and I have no doubt that in a large series of the Engano form individuals will be found which are pratically indistinguishable from $H . d$. masoni and diadema.

It is worth noticing that the Engano race of I. diadema is in every respect nearer to the peninsular (d. masoni) and Java-Timor race (d. diadema) than to the Sumatran form, which latter is indistinguishable from the Bornean form (d. vicarius).

Measurements of Hipposiderus diadema masoni and enganus.

	H. d. masoni.		H. d. cngaturs.	
	Teuasserim. Q ad.	Malay Pen. Ad.	Engano. $\sigma^{7} \mathrm{ad}$.	Engano. Type. Q ad.
	mm.	mm.	mm.	mm.
skull, total length to front of c. " basilar length to front of c .	32.7 26.8	33.3		$\begin{aligned} & 34 \\ & 27.2 \end{aligned}$
" mastoid width	15.3			
" width of brain-case . . .	12.8	13		12.8
" zygomatic width.	18.8	19.8		
* maxillary width	12.3	13.2		12.5
* anteorbital width.	9.8	10		10.2
* across cingula of canines .	8.7	8.8		
Mandible, to front of incisors. .	23.5	23.9	25.7	24
Lpper teeth, c-m ${ }^{5}$.	13.1	13	14.2	13.3
Lower teeth, $\mathrm{c}-\mathrm{m}_{5}$. . . .	14.1	14.3	15.4	$14 . \mathrm{s}$
Ears, length, inner margin.	28.5		30	30.2
" greatest breadth	26.2		28.3	28.8
Hurse-shoe, greatest breadth.	11		12.2	11.8
Posterior leaf, breadth .	13		12.2	12.2
Forearm	90.5	ธ6.	92.7	88.8
Pollex	13.5		15	15.5
3rd digit, metacarpal	65.2	64.7	64.2	62
- 1st phalanx .	32	28.2	29.5	29
- 2nd phalanx	32	28.6	32.5	32.2
4th digit, metacarpal.	62.5	6.0 .5	63.8	60
- ist phalanx.	23.3	20.9	21	21.2
- 2nd phalanx	17.8	14.9	16.2	16.2
5 5th digit, metacarpal	56.2	54.8	58.2	55
- 1st phalanx	23.2	21.8	22.2	21
- 2nd phalanx	18.5	15.8	18.8	18.2
Tail	57.5		53	53
Lower leg.	34.5	34.3	38	36.5
Foot, with claws.	18.3		18.5	18.5

3. Hipposiderus lankadiva, Kelaart.
4. Hipposiderus lankadiva, Kelaart, Prodromus Fannae Zeylanicie. p. 19. - Type locality: Kandy, Ceylon.
5. Phyllorhina diadema (partim, not Geoff.), Dobson, Cat. Chir. Brit. Mus. p. 137. - Ceylon specimens only.
6. Ilipposiderus diadema (not Geofl.), Thomats, Ann. Mus. Civ. Genova (2) X. p. 924. - Blamó, Upper Burma (one of the specimens mentioned below).
1!0.). IHipıosiderus lankadiva Kel., Knud Andersen, Ann. \& Mag. N. II. (7) XV1. p1. $500-512,507$ (1 Nor. 1905). -- 11. lankadira shown to be diflerent from $I I$. diadema.
 nardo Fea (1885 and 1886). Genoa Museum. - Skulls of both specimens extracted.
H. lankadiva is easily distinguished from H. diademu (with which it has till recently been confused) by the following four characters: -

The upper aspect of the facial portion of the skull directly in front of the sagittal crest (i. e. the recrion bordered behind by the front of the sagittal crest and externally lyy the supraorbital ridges) is distinctly convex or flattened, not concave as in diadema. The mesopterygoid space is narrower, the palation angle acute or subacute; in diadema the mesopterygoid space is broader, the palation angle broadly rounded off. The upper border of the posterior nose-leaf is trilobate, i. e. there is a median crlobular projection, separated on either side by a very distinct emargination from the convex-margined lateral parts of the leaf; in diadema the upper border of this leaf is almost evenly convex, as a segment of the cireumference of a circle. Of the three vertical rideres on the front face of the posterior leaf, the lateral ones are quite as strong as (or, if anything, stronger than) the median one: in diadema the lateral ridges are always considerably less prominent than the median ridge, sometimes so mach reduced as to be almost obliterated; this difference in the development of the ridges is probably a consequence of the difference just mentioned in the shape of the posterior leaf. - In addition to these points, the ramial rostrum of H. lankadiva is comparatively narrower, aml the ears comparatively smaller than in $I I$. diadema.

The above characterization is based on an examination of 7 II. lankadiva (\mathbf{i} skulls) and 32 II. diadema (24 skulls).

The species was hitherto known from Ceylon only (sere my paper, l. s. e., p. B01). It is therefore of much interest now to find its range extended as far as Burma. I'nfortunately the ouly two examples ohtained by Lematolo Fea in this latter place ame
immature: they accord, in all essential respects (cranially and externally), with H. lankadiva from Ceylon, above all, of course. in the four characters just pointed out, but whether therere are minor differences which would make it necessary to separate the Burmese bat as a distinct race, I an unable to decide with certainty from these two youngish specimens.

Tenasserim is the most western locality from which I have seen any specimen of I. diadema, the species ranging. as far as known to me, in tarions races from Tenasserim and the Malay Peninsula (II. d. masoni) in the west. eastwards through the Indo-and Austro-Malayan Archipelago (H. d. enganus, diadema, vicarius, griseus), as far as New Guinea (H. d. pullatus) and the Solomon Islands (II. d. oceanitis). But Dohson has recorled " H. diadema " from the Central Provinces of India, and he also mentions a specimen from Darjeeling (${ }^{1}$). But, considering that H. lankadiva was by Dobson (as by others) contused with H. diadema; further, that I. lankadiva is now known to occur not only in Ceylon hut also in Purma, and therefore, no doubt, also inhabits the Indian Peninsula and parts of Himalaya, the question arises: are the specimens recorded by Dobson really II. diadema, or are they II. lankadiva? Is it perhaps that H. lankadiva is a western species, ranging from Ceylon and the Indian Peninsula to Burma, H. diadema an eastern species, ranging from Tenasserim and the Malay Peninsula to the Solomon Islands? Since the two species are evidently rather closely related, of nearly the same size, and probably have much the same habits (food, \&c.), the suggestion is, a priori, not unreasonable that they occupy separate areas, allowing, of course, for the probability that these areas overlap each other somewhere in Indo-China. - A re-examination of the specimens in the Calenta Museum registered by Dohson would give some basis for a settling of these questions.

4. Hipposiderus cafler caller, Sund.

1847. Rhinolophus caffer, Sundevall, Öfv. Kgl. Vet.-Akad. Förh. III. no. 5 (13 May 1846), pp. 118-119. - Type locality: Port Natal. (Paratype examined.)
${ }^{(1)}$ Mon. Asiat. Chir. p. 200, nos. 292-296 (1876): see also J. Anderson, Cat. Mamm. Ind. Mus, Calcutta, p. 115 (1881).
1848. Phyllorhina gracilis, Peters, Natmw. Reise nach Mossamlique. Säugetlı, pp. 36-38; pl. VII. figs. 1-4; pl. XIll. figs. 14-15. - Type locality: Tete, Lower Zambesi.
1849. Phyllorhima bicomis, Heuglin, N. Artit Acad. Caes. Leop.-Car. XXIX. pp. 4, 7-8. - Type locality: Keren, Erythrea. (Types examined.)
1850. Hipposiderus caffer, Sund., typicus, Knud Andersen, Ann. \& Mas. N. H. (7) XVII. pp. 275-77, $281-82$ (1 Marth 1906).
a. 0^{7} ad. (in alc.). Monkullo, near Massaua, Erythrea. Collected and presented by Dr. G. Schweinfurth. Genoa Museum. - Skull extracted.
1851. Q ad. (in ale.). Gilinda, Erythrea; Jnly 1893. Collected by Ior. V. Ragazzi. Genoa Museum.
(.-d. σ^{7} ad., 0^{7} ad. (in alc.). Agordat, Erythrea; June 1906. Collected by Dr. C. Figini. Iresented to the British Museum by Marguis G. Doria (nos. 6.12.J.3-4). - One skull extracted.
e. I ad. (in alc.). Harrar, Gallaland; May-June 1904. Collected by Capt. C. Citerni. Genoa Museum. - Skull extracted.

These five specimens from Erythrea and Gallaland accord in every respect with the large series of H. caffer ca/fer in the british Museum; and the region in which they were obtained falls 'guite within the limits of the area inhabited by this rame. as defined in my paper on I. caffer (l. s. c.).
5. Hipposiderus caffer tephivas, Cabr.
1906. Hipposiderus tephrus, A. Cabrera Latorre, Bol. R. Sor. espain. Hist. nat. pp. 358-59 (July 1906). - Type locality: Mogator, Morocro. (Topotype examined.)
a-l. $\sigma^{2 \pi}$ ad., $\sigma^{\text {Th }}$ ad. (in alc.). Nubia. From E. Verreatux. Genoa Museum. skulls of both extracted. Teeth imworn.
r-d. It ad., Q ad. (in ale.). Ashantee. From E. Verreaux. Genoa Mnseum. - One skull extracted. Teeth unworn.
e-f. $\delta^{T h}$ ad.,, ad. (in alc.). Gold Coast. From Dr. Jentink [presumably from Pel's collections|. Genoa Museum. - One skull extractel. Teeth unworn.
g-k. 5 Q ad. (in alc.). Farim, Portugnese Senegambia; May 1899. Collected by Sr. Leonardo Fea. Genoa Museum. One sperimen presented 10 the Britislı Museum by Marquis G. Doria (no. 6.12.1.5). - Three sknlls extracted. Teeth unworn or slightly worn.

1. 7 young ad. (in ale.). Mogador, Moroceo; 29 August 1905 . Collected by Sr. Martine\% de la Escalera. Received in exchange from . Cabrera Latorre. Topotype and paratype of $I I$. tephrus, Cabr. (sperimen * W) \# in Cahrera's paper, I. s. (.. p. 358). British Museum (no. C.I2. 1.6). - Skull axtracted.

According to Cabrera, II. tephrus differs from H. caffer in the following three respects: -
(1) It is " mas pequeño cue cualquiera de las formas de esta especie hasta ahora descritas n; forearm 46 , third metacarpal 31 mm . (2) The ears are "mas largas que anchas n, whereas " en las otras dos especies del mismo grupo (H. caffer y beatus), la longitud de las orejas es menor que su anchuran; length of ear 13.3, width of ear 19.3 mm . (3) The skull "es notable por ofrecer una anchura maxilar menor yue la longitud de la serve dental superior, mientras en el H. caffer dicha anchura es igual o un poco mayor yue la longitud de la serie dentaln; in the type specimen the maxillary wilth is stated to be 8 mm . the maxillary tooth-row 8.7 ; in another specimen the measurements are stated to be, respectively, \because and 6 mm .

In testing the validity of these characters I leave out of consideration all the other examples referred by me above to $I I$. c. tephrus, taking as a basis only the authentic specimen (topotype and paratype) sent by Cabrera: -

The length of the ears of this specimen, from base of inner. margin to tip, is 13 mm ., their greatest width 14.2 mm. . i. e. the ratio between the length and width of the ears is quite as in all other races of H. caffer. It will be noticed that my measurements of the length of the ear (13 mm .) is rery closely in accordance with that given by Cabrera (13..i mm.), whereas there is a considerable difference between his (19.3 mm .) and my own measurement (14.2 mm .) of the width of the ear; when therefore Cabrera found the ear of H. tephres to be much narrower than indicated by me for any race of H. caffer, it is obviously because he took the measurement according to a method different from my own. - In all the four races of H. caffer described in my monograph of this species, the maxillary width of the skull (externally, across $\mathrm{m}^{3}-\mathrm{m}{ }^{3}$) is a trifle larger than, or at least equal to, the length of the maxillary tooth-row $\left.(c-m)^{3}\right)$, in H. tephrus the former is stated to be decidedly smaller than the latter; in other words, the palate is said to be narrower. But the maxillary width of the topotype of H. tephrus is 6.3 mm ., the maxillary tooth-row 6 mm ., i. e. the ratio between the maxillary width and the length of the maxillary tooth-row is quite as in all other races of H. caffer. Here, again, it will
be notied that Cabrera's measmrement of the tooth-row ($: 3.7 \mathrm{~mm}$.) is practically the same as that taken by myself (6 imm .), whereas the difference lies in his ($\%$ mm.) and my own measurement (6.3 mmm .) of the maxillary width; that is, the allegred difference, in this respect, between H. tephrus and H. caffer is entirely due to a difference in the method of measuring. - There remains the difference in general size between 11 . tephrus and H. caffer. caffer, emphasised by Cabrera. This holds good to a certain extent, i. e. the former averages slightly smaller than the latter. - I have carefully compared the Morocco specimen with the british Museum series of H. c. caffer, and can find absolutely nothing beyond this small arerage difference in dimensions; it is therefore out of the question to consider H. tephrus a distinct species, but it may be kept separate as a local race.

Having thus discussed the general characters of H. c. tephrus I can now proceed to point them out in detail: $-H$. c. tephrus is extremely close to H. c. caffer, but has - (1) smaller ears: length of ear-conch from hase of inner margin, in 12 specimens, 11-13.." mm. (in 侻 $I I$. c. caffer $19.3-1 \% \mathrm{~mm}$.) ; width of ears
 forearm: 待. $\mathrm{i}-47 \mathrm{~mm}$. (46..i-31.8 mm.) ; (3) shorter metacarpals: third metacarpal $31.8-33.8$ mm. (33.5-38.2 mm.); - (4) shorter tail: $9(6.3-3) \mathrm{mm}$. (30-38 mm.); - (3) shorter lower legr: $18.9-20 \mathrm{~mm}$. (19.3-29 mm.); - (6) smaller skull: total length of 8 skulls, to front of canines, $16.7-17.2 \mathrm{~mm}$. (in 32 H. c. caffer 17.2-18.3 mm.): length of mandible $10.3-10.8 \mathrm{~mm}$. ($10.7-11 . .3 \mathrm{~mm}$.); but notwithstanding the smaller skull the size of the teeth seems to be the same as in II. c. caffer: length of maxillary tooth-row $\overline{3} .7-\mathrm{f}) \mathrm{mm}$. (3.7-6.2 mm.) ; this latter fact has already been mentioned by Cabrera (" los dientes, con relación al tamaño del cráneo, son bastante grandes n). - Further particulars are found in the table below (p. 16), in which I give measurements of the sperimens examined of I. c. tephrus from (a) Nubia, (b) Ashantee and Gold Coast, (e) Farim, and (d) Mogador; further, (e) minimum and maximum of all the specimens taken together, and, for comparison, (f) minimum and maximum of a large series of H. c. caffer.

The colour of the fur, in II. c. lephrous, is precisely as in II. c. ca/fer.
II. c. tephrue is not confined to Morocco, nor even to N. Wr. Africa. As seen by the list of specimens referred by me above to this race, it also oceurs in Nubia, Ashantece, the Gold Coast, and Portuguese Senegambia. This series of places gives, probably, a fairly good idea of its true range, and it, at the same time, cmables us to understand its origin and its present distribution. In discussing these questions, the following should be borme in mind: - First, II. c. tephrus is extremely closely related to the East African II. c. caffer, so closely, indeed, that there can be no reasonable doubt that it is nothing but a northwestern offishoot of this latter; second, if this is taken as granted, it can only have reached Portuguese Senegambia and Western Moroceo in one of two ways: either from Kordofan (the most northern point known of the range of $H . c$. ca/fer) through the Nile Yalley, along the Mediterranean coast of Africa, to Morocco. down the Atlantic: coast to Senegambia and the Gold Coast; this route, in itself highly improbable, is made practically unthinkable owing to the fact that H. caffer is completely unknown in Egypt as well as in the whole Mediterranean coast region of Africa; thus only a second way is left: from Kordofan II. c. caffer has spread nortlıwards as far as Nubia, westwards through Bahr el Gazal, the Tsad Sea Region and the Upper Niger Valley, to Ashantee and the (rold Coast, further to Senegambia and northwards to Morocco. By this explanation it is at once made clear, why there in the western (Senegrambia) and northwestern corner (Moroceo) of Africa occurs a race, H. c. tephrus, which has nothing to do with the geographically nearer H. c. guineensis or H. c. centralis, but, on the contrary, is phylogenetically extremely closely comected with the East African H. c. caffer ; and it is also clear, why there in the Guinean coast region (Ashantee, Gold Coast) occur two races of this species, H. c. tephrus and guineensis which phylogenetically as well as in general appearance are the strongest contrasts to each other: the former, namely, has come from east, through the Niger Valley, the latter from the centre of Africa, the Congo Valley.
Measurements of Hipposiderus caffer tephous．

$\begin{aligned} & \dot{8} \\ & \stackrel{y y y}{c} \\ & \dot{~} \\ & \stackrel{y}{c} \end{aligned}$		

6. IIfposiderus cafler contralis, K. And.
7. Hipposiderus caffer centralis, Knud Andersen, Aun. \& Mag. N. H. (7) XVII. pp. 277-78, 281-82 (1 March 1906).
a. 7 ad. (in ale.). Vivi, Lower Congo; Febr. 1886. Collected by Capt. (i. Bove. Genoa Museum. - Skull extracted.

The Congo Valley is the true home of the large-skulled and large-toothed race recently separated by me under the name II. c. centralis. The specimen from Vivi is puite in accordance with the characters given in the paper referred to above.
7. IIpposideru- calfirl suincen-is, K. And.
1906. Hipposiderus caffer guineensis, Knud Andersen, Amm. \& Mag. N. H. (7) XVII. pp. 278-79, 282 (1 March 1906).
a-c. Ot $^{\text {ad., }, ~ I ~ a d ., ~ \& ~ y o u n g ~ a d . ~(i n ~ a l c .) . ~ I s l a n d ~ o f ~ S a n ~ T h o m e, ~ G u l f ~ o f ~ G u i n e a, ~}$ $0-300$ m.; July-August 1900, and June 1901. Collected by Sr. Leonardo Feat. Genoa Museum. One specimen presented to the British Museum by Marquis G. Doria (no. 6.12.1.9). - Two skulls examined. All the specimens have the teeth unworn.
(l-o. $2 \sigma^{71}$ ad., 2 or young ad., 1 \& ad., 5 O young ad., 2 q juv. (in alc.). Prince's Island, Gulf of Guinea, $100-300 \mathrm{~m}$.; January-March, and May, 1901. Collected by Sr. Leonardo Fea. Genoa Museum. Two specimens presented to the British Museum by Marquis G. Doria (nos. 6.12.1.7-8). - Three skulls examined. All the specimens have the teeth unworn.
p-q. 2 Q ad. (in alc.). Liberia. Received from Sir. P. Siepi. Genoa Muscum. - One skull examined. Teeth almost unworn.

The fine series collected by the late Sr. Leonardo Fea enables me to say that individuals of I. caffer from San Thome and Prince's Island are indistinguishable from the race (II. c. guineensis) distributed over Fernando Po and the adjoining Guinean coast region, from the Como River to Liberia. Also the coloration of the fur is the same as in Fernando Po and continental specimens (see my laper, l. s. c.).

In the table below (p. 20) I give meaturements of Foa's adtult sperimens from (1) San Thomé and (2) Prince's Island, and, for comparison, those of a british Musemm series from (3) Fernando Po, and of all adult specimens of this race I hate seen from (亿) the Guinean Coast (Como River, (iaboon. Benito River, ('ameroons, Old Calabar, Liberia).

The races of H. ca/fer, their interrelations and distribution. - There are five geographical races of 11 . caffer: caffer, tephrus, centralis, guineensis, angolensis. They tall into two natural groups, as follows: -
(1) A small-toothed, small-skulled, narrow-jawed, and lightroloured form, II. c. caffer, inhabits the eastern part of the continent, from Erythrea and Lordotan in the north, to Transvaal and Pondoland in the south. From the sonthern part of this area. no doubt through the Zambesi Valley, it has made its way to Ingola. From the northem part of its area it has spread northwards to Nubia, westwards through Bahr el Gazal, the Tsan sea regrion and Niger Valley, to Ashantee and the Gold Coast, further to Senegrambia and Western Morocco; lout in all of these places it has slightly diminished in size, thus constituting a fairly distinct race, H. c. tephrus.
(2) A large-toothed, large-skulled, broad-jawed, and darkercoloured form, II. c. centralis, oceupies the broad Equatorial belt of the continent, from the Congo estuary in the west, throurch the whole of the Congo Valley, to Cganda. From this recrion it has spread in three directions: - eastwards, to british and Cerman East Africa, where it meets and occurs together with H. c. caffer; sonthwestwards, along the Congo tributaries. to Angola. where it again meets $I I$. c. caffer ; and northwestwards, along the Guinean coast, inchuding the islands in the Gulf of (bumeat but individuals from this latter tract (Guinean coast and islands) reath the extreme in the width of the upper jaw and the darkness of the colour of the fur, and may be kept distinct as a failly recogrizal)le race, I. c. guineensis. In the Guinean coast recoion this large-skulled and dark extreme meets and ocems together with its strongest contrast, the very small-skulled and lightcoloured II. c. tephrus.

From this it will be observed that there are in fact, two primeipal forms only of H. ca/fer: the one (II. c. centralis +
guineensis) ocrupying the Congo Valley, from which it has spread eastwards, southwestwards, and northwestwards; the other (H. c. caffer + tephrus) occupying the rest of Africa, the extreme south and the Merliterranean coast region excepted. This being so. it might be questioned, whether it would not be better, from a technical point of view, to treat these two principal forms as distinct "species", viz. H. caffer (sublivided into H. caffer ca/fer. and I. caffer tephrus) and I. centralis (sublivided into II. cenbalis centralis and II. centralis guineensis); it would have the obvions advantage of expressing, by the rery technical names, the frue phylogeny of the races, whereas, when we put all the races down as "sulspecies" of H. caffer, our nomenclature obscures their phylogenetic interrelations, in so far as then the technical names of the four races easily convey the idea that they are of equal " value " (i. e. equally distinct from each other), which certainly they are not. But to base nomenclature on phylogenetic considerations would, in my opinion, be a rather dangerous principle; and in this particular case there are at least two reasons which make it unadvisable to treat H. c. caffer and centralis as distinct species: - first, though they, even where their areas overlap each other and where, conseguently, they would seem to have good opportunity for intergradation, almost always preserve their racial characters clear and well pronounced, intermediate examples do occur, though apparently very rarely (in a large number of individuals, from many different places in East Africa, I have found one only which is intermediate between caffer and centralis); second, in Angola, where caffer, having come from east (the Zambesi valley), and centralis, having come from northeast (the Congo valley), live together, there also occurs a truly intermediate "race», H. c. angolensis. These facts are strong evidence that caffer and centralis are not sufficiently sharply differentiated to be considered distinct species. - As being intermediate, the Angolese "race " hardly deserves a technical name of its own, but since the name angolensis is available, I do not see that it can cause any harm to employ it, when only it is understood that by "H. c. angolensis " we mean but such specimens of II. caffer from Angola as are intermediate between caffer and centralis.

The subjoined diagram gives a view of the probable phylogeny and interrelations of the five races of I. caffer.

Measurements of Hipposiderus caffer guineensis.

	san Thomé. 3 adults, 2 skulls.		lrince's Isl. 10 adults, 3 skulls.		Fernando Po. 8 adults, s skulls.		Guinean Coast. 20 adults, 16 skulls.	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	tax.
	mm.	mm.	mm.	mm.	mm .	nm.	mm	mm .
Skull, total length to front of c	19	19.2	18.7	19	18.5	19.3	1 1.5	20
of c	14.7	14.8	14.3	14.7	14.6		14.2	15.3
mastoid width	10	10.2	10	10	10	10.2		10.7
" width of brain case	8. 7	8.7	8.6	8.7	8.7	1	8.5	9.1
" zygomatic width	10.3	10.5	10.2	10.7	10.3	11	10.2	11.2
" maxillary width	I	7	7	7.2	7	7.3	7	7.8
" anteorbital width.	5.2	5.2	5.2	5.3	5	5.2	5	5.2
nines	4.8	5	4.8	5	4.s	5	1.8	5.2
Mandible, to front of incisors	12.4	12.5	12.2	12.4	12.2	12.9	11..	13.2
Upper teeth, $\mathrm{c}^{\text {cm }}{ }^{5}$.	7	7	6.8	7	6.8	7	${ }^{6.8}$	7.3
Lower teeth, $\mathrm{c}_{\text {- }}^{\text {m }}$, . . .	7.5	7.7	7.5	7.7	7.5	7.8	7.3	
Ears, length, inner margin	15	15.7	14.5	16.2			14	15
\% greatest breadth	16.2	17	16	17			15.2	17.5
Horseshoe, greatest breadth	6	6.5	1	6.7			.	6.8
Posterior leaf, breadth.	6.8	7.1	(0.4	7.2			1	5,
Jorearm	50.5	51.8	50	51.7	12. 3	52	4	52.8
Pollex	8.2	9	7.	8.2			,	9
3rd digrit, metacarpal.	36	38.5	35.7	38	35.7	34.2	35.2	39.8
- ${ }_{\text {ct }}$ phatimx.	17	17.8	17	15.2	16	17.2	16	$1: .3$
- 2 nd phalanx	17.8	18.8	17	19	16.8	1N,	15.5	20
4th digit, melacarpal.	36	37.5	35	37	31.2	37	31.4	39
- 1st platanx.	12	12.8	11.\%	12.8	11	12.2	11	12.7
-- 2nd phatanx	9.2	10	9.2	9.8	9	9.8	8.7	10.:
5 5th digil, metacarpal.	32.2	34.2	32	33.7	30.8	33.5	31.2	31.7
- 1st phalanx.	13.5	14	13	14.6	12. 5		12.4	1.1
- 2nd phalanx	9.8	11.2	10	10.6	9.8	11.2	9.3	
Tail. ${ }^{\text {c }}$.		$0: 6.7$		35.5 20.8				
lower legr chas: foot, with claws	20.8 8.8	21 9.2	19.8	20, ${ }^{8}$	19	20.2	18.8 8.7	${ }_{10}^{20.5}$

8. Hipposiderus schneideri, Thos.
9. Hipposideros schneidersi (misprint), Thomas, Zool. Anz. XXV1I. nos. 23-24, pp. 722-23 (12 July 1904). - Type locality: Lpper Langkat, soekaranda, Deli, N. IV. Sumatra. (Type examined.)
a-b. σ^{7} ad., 9 ad. (in alc.). Sockaranda, Deli, N. W. Sumatra. Collected by Dr. H. Dohrn. Genoa Museum.
II. schneideri differs from its nearest geographical relation, II. labuanensis, Tomes (${ }^{1}$), in the following particulars: -
(1) In II. labuanensis the tip of p_{2} (anterior lower premolar) is about level with the middle of the principal cusp of P_{4} (posterior lower premolar); in H. schneideri p_{2} in very much reduced in size, its tip only a little higher than the cingula of the canine and p_{4}, not, by far, reaching the middle of the cusp of p_{4}. In H. labuanensis the length (antero-posterior extent, labial aspect) of p_{2} at base is not much smaller than the length of p_{4} at base; in H. schneideri the length of p_{2} is scarcely half the length of p_{4}. In H. labuanensis P_{2} in cross section at base is $\frac{1}{2}-\frac{2}{3}$, in $I I$. schneideri $\frac{1}{4}-\frac{1}{3}$, of P_{4}. In short: p_{2} is in H. schneideri very much smaller than in H. labuanensis, and this is, in fact, the most convenient character for a ready discrimination of the two species.
(2) To the reduction in size of p_{2} corresponds a reduction in size of p^{2} (anterior upper premolar). In H. labuanensis p^{2} is small, but easily observable; in $I I$. schneideri it is exceedingly small (as a small dot), situated quite on the external side of the maxillary bone, very difficultly observable (scarcely at all without a lens), and occasionally wanting; in the type of the species it is present on one side only, in the two specimens collected by Dohrn on both sides.
(3) The nasal swellings in I. scheneideri are a trifle broader than in H. labuanensis: anteorbital width in the former species 3. 8 mm ., in the latter $5-3.5 \mathrm{~mm}$.
[^0]I fail to see any well marked external difference bretween the two species (the tail in H. schneideri may average a little shorter).

In the subjoined table I give measurements of the type of II. schneideri (Brit. Mus. no. 4.4.1.2) and of the two specimens collected by Dohrn.
II. scheneideri was hitherto known only from the type specimen in the British Museum.

Measurements of Hipposiderus schneideri.

9. Rhinolophus trunc:atus, Рет.

1871. Rhinolophus truncatus, l'eters, M. B. Akad. Berlin p. 307 (8 June 1871). - Type locality: Batchian.
1872. Rhinolophus megaphyllus (not (rray), var. α, Dobson, Cat. Chir. Brit. Mus. p. 111.
1873. Rhinolophus truncatus Pet., Knud Andersen. Proc. Zool. Soc. London II. pp. 80-81, 84, 120 (17 (1ct. 1905).
a. δ^{7} ad. (in alc). Ternate; 1875. Collected by A. A. Bruijn. Genoa Museum.

Rh. Iruncatus was hitherto known from Batchian only. The Ternate specimen recorded above is in every respect indistinguishable from a series of Batchian examples in the British Museum; also the peculiar coloration of the fur (see my paper, l. s. c.) and the dimensions are practically the same.

All the specimens of Rh. truncatus I had hitherto seen were dried skins, collected by A. R. Wallace in Batchian, and all the skulls were more or less fragmentary; I therefore had to describe the nose-leaves from resoftened specimens, to leave out all meat surements of the soft parts, and to give only a very incomplete series of measurements of the skull. The Ternate specimen, which is preserved in alcohol and in excellent condition, and the skull of which is perfectly undamaged, enables me to fill up these deficiencies in my description of the species.

As in all primitive eastern forms of the Rh. simplex group (of which Rh. truncatus is a member), the sella is decidedly broader at base (9.7 mm .) than at summit (1.8 mm .) ; lengih (height) of sella, from angle between vertical portion and nasal lobe to summit, 4 mm .; from the base to about one third of iss height the lateral margins of the sella are subparallel; here at this point is a very shallow, but distinct, constriction, and then the margins are again subparallel (very slightly converging) to the summit; front face of sella covered with extremely short, whitish hairs, only observable under a lens; summit completely square-cut ("truncatus "). Lancet rather long (4 mm., from posterior transverse bridge), and almost quite cuneate.

In the table below I give, for comparison with the measurements of the Ternate specimen, those of the Batchian examples in the British Museum.

Measurements of Rhinolophus truncalus.

10. Rhinolophum wheno, K. And.
1905. Rhinolophus stheno, Knud Andersen, Proc. Zool. soe. London 11. pp. 91-92, 120; pl. III. figs. 8 a, b (17 Oct. 1905).
a, b. OT ad., Ot arl. (in atc.). Sockaranda, Deli, N. W. Sumatra. Collected by Dr. H. Dohrn. Genoa Museum. - Skulls of both specimens examined.

This is the first record of Rh. stheno from Sumatra. The species was hitherto known only from the Malay Peninsula (Selamgror, Penangr).

In the sumatran specimens, as in all other specimens I have seen, p_{3} is external, P_{2} and P_{4} in contact. p^{2} in row.

Rh．stheno is at once distinguished from Rh．borneensis and Rhl rouxi by the following characters：－
（1）By the rery strongly and abruptly projecting nasal swel－ lings；compare the skull of Rh．stheno in side view（Proc．Zool． Soc．London 1903 II．pl．III．fig． 8 a）with that of Rh．borneensis （ibid．fig．．${ }^{\circ}$ b）and Rh．rouxi（ibil．fig． 9 c ）；in this point Rh．stheno is unique among the eastern species of the Rh．simplex group．
（2）By some interesting peculiarities in the wing－structure，as shown by the subjoined table of wing－indices：the wing－structure of $R h$ ．borneensis，it will be observed，is in all important respects similar to that of $R h$ ．rouxi，with the only exception that Rh．rouxi has proportionally longer metacarpals；in Rh．stheno， however，the following modifications have taken place：－first， the third and fourth metacarpals are somewhat shortened；second， all the proximal phalanges are shortened，especially the firsh phalanx of the fourth digit：in Rh．borneensis and rouxi this phalanx is much more than，in Rh．stheno almost precisely equal to，one fourth the length of the metacarpal；third，the second phalanx of the third digit is noticeably lengthened：in Rh．borneensis and rouxi it averages decidedly less，in Rh．stheno more，than $1 \frac{1}{2}$ the length of the first phalanx．
（3）By the very short tail：considerably shorter than the lower leg，whereas in Rh．borneensis and rouxi it is longer than or equal to the lower leg．

Rh．stheno has two rather close relatives in South Africa， viz．Rh．simulator，K．And．，and Rh．denti，Thos．

Wing－indices of Rhinolophus borneensis，rouxi，and stheno．

	范	3rd digit．			4th digit．			5th digit．		
		害			案	$\begin{aligned} & \text { 兰 } \\ & \underline{\underline{\underline{\underline{x}}}} \end{aligned}$	$\begin{aligned} & \text { 垔 } \\ & \text { 菏 } \end{aligned}$	案葆	$\begin{aligned} & \frac{\dot{E}}{\underline{\underline{E}}} \\ & \text { 关 } \end{aligned}$	$\begin{aligned} & \text { 賈 } \\ & \text { = } \end{aligned}$
$R h$ ．borneensis．	1000	704	299	414	731	213	250	729	227	257
Rh．rouxi．	1000	728	301	426	750	215	258	756	238	248
Rh．stheno ．	1000	690	278	453	718	182	259	${ }^{2} 26$	207	233

11. RElninolophma allinis supcrans, K. ANb.
12. Rhinolophus affinis superans, Knud Andersen, Proc. Zool. Soc. London II. pp. 104, 105 (17 Oct. 1905).
a. σ^{7} ad. (in ale.). Si Rambé, Sumatra; 1890-91. Collected by Ir. E. Modigliani. Genoa Museum. - Skull extracted. Teeth unworn.

Rh. affinis is readily distinguished from Rh. rouxi - : species with which it has almost always been confused - by its pandurate sella (in $R h$. rouxi the sella is practically parallelmargined), by its more distinctly cuneate lancet (in Rh. rouxi the lancet is hastate), by the lengthening of the second phalanx of the third digit (in Rh. rouxi less, in Rh. affinis more, than $1 \frac{1}{2}$ the length of the first phalanx), and by the shortening of the palatal bridge.

Rh. ferrum-equinum, which has also a pandurate sella and lengthened second phalanx of the third digit, differs from $R h$. affinis in having p^{2} external to the tooth-row or wanting (in Rh. a/finis 1^{2} is situated in the tooth-row), in a peculiar shortening of the third metacarpal, and in the beginning or complete obliteration of the lateral chin grooves.
$R h$. affinis is distributed, in various races, from the N. WV. Himalayas to \therefore China, through Indo-China, N. Natunas. and the Malay Peninsula, to Sumatra, Java, and Lombok.

The particular race here under consideration, Rh. a. superans, is as yet known from Lower Siam, the Malay Peninsula and Sumatra, and ehamacterised chiefly by the broad horse-shoe and nasal swellings. Both of these peenliarities reach a elimax in the still more eastern Rh. a. princeps, K. And. . firom Lombok.

1905. Rhinolophus refulgens, Knud Andersen, Proc. Zool. Sua. London II. pp. 124-126, 135, pl. IV. figs. 16 a, b. c (17 Oct. 1905).
at b. Or ad., Sad. (in atc.). Soekaranda. Ieli, N. W. Simmatra. Collected by Dr. H. Bolari. (renoa Museum. - One skull extracted.

This is the first record of Rhe refulgens from sumatra. The species was hitherto known only from two examples, in the British Museum, from the Malay Peninsula (Perak and selangror').
13. Rhinoloplus acruminatus acuminatu-, Per.
1871. Rhinolophus acuminatus, Peters, M. B. Akad. Berlin (8 June 1871) p. 308. - Type locality: Gadok, Java.
1878. Rhinolophus acuminatus Pet., Dobson, Cat. Chir. Brit. Mus. p. 113.
1878. Rhinolophus petersi (partim, not Dobson 1872 and 1880), Dobson, Cat. Chir. Brit. Mus. 1. 114. - Compare Proc. Zool. Soc. London 1905, 11. pp. 95-98.
1905. Rhinolophus acuminatus, Pet., typicus, Knud Andersen, Proc. Zool. soc. London 1905, II. p. 133 (17 Oct. 1905).
a. 0^{7} ad. (in alc.). Buitenzorg, Java. Collected by Dr. Th. Arlensamer, 1897. Presented to the British Museum by Marruis G. Doria (no. 6.12.1.13). - Skull extracted. Teeth unworn.

Rh. acuminatus belongs to a small section of the Rh. lepidus group, distributed over Sumatra, Nias, Engano, Java, and Lombok, of which now the following forms are known: -
(1) Rh. sumatranus K. And. (${ }^{1}$): Sumatra; sella very distinctly expanded below the middle; forearm about Bl ; third metacarpal about 3.3.2-36.8; breadth of horse-shoe about 8.2-8.3 mm. - Specimens examined: one adult (with skull) in the British Museum. one adult in the Göttingen Museum.
(2) Rh. circe K. And. (${ }^{2}$); Nias; similar to Rh. sumatramus, but with rather slenderer skull and smaller teeth; shorter forearm, metacarpals, phalanges, and tibia; forearm 4.3.2-49; third metacarpal $32-34.2 \mathrm{~mm}$. ; breadth of horse-shoe as in Rh. sumatramus. Specimens examined: eight adults (four skulls) in the U. S. National Museum.

[^1](3) Rh. calypso K. And. (${ }^{1}$); Engrano; similar to Rh. sumaIranus, but with broader horse-shoe and larger ears; forearm ィ9-9.;".8: third metacarpal 3.3-38.3; breadth of horse-shoe 9.6-10.2 mm. - Speecimens examined: two adults (one skull) in the British Musem, six adults (four skulls) in the I. S. National Museum.
(4) Rh. acuminatus acuminatus Pet.; Java; allied to Rh. sumatranus, but expansion below the middle of the sella rather indistinct or quite ohliterated; forearm 48.0-31; third metacarpal $3.3-36 . .0 \mathrm{~mm}$. ; breadth of horse-shoe as in Rh. sumatranus. specimens examined: three adnlts (two skulls) in the British Museum.
(i) Rh. acuminatus audax K. And. (${ }^{2}$); Lombok; similar to Rh. a. acuminalus, but averaging smaller; forearm 47-49..': third metacarpal 33.7-3.3.2; breadth of horse-shoe as in Rh. a. acuminatus. - Specimens examined: two adults (one skull) in ther British Museum.

The dentition, in all these bats, is very uniform: - p_{3} external to the tooth-row (only in one specimen of Rh. calypso almost in row); p_{2} and p_{4} in contact or almost in contact (with the exception just mentioned); p^{2} always in row, with a small cusp, pointing inwards.

The five forms, it will easily be seen, are representatives of two "types "; in one (Rh. sumatranus, circe, calypso) the sella is very distinctly expanded below the middle; in the other (Rh. acuminatus) the expansion of the sella is rather indistinct or 'quite obliterated. The former type is distributed over Sumatra, Nias, and Engano (western islands), (ach of these islands having its distinct species; the latter type is known from Java and Lombok (eastern), either of these islands having its separate race.

In the table below I give a summary of the measurements of all the bats examined of this section.

[^2]Measurements of Rhinolophus acuminatus and allied forms.

skull, total length to front of c. basilar length to front of c . " mastoid width .	sumatranus. 2 adults, 1 skull.		circe. s adults, 4 skulls.		$\begin{aligned} & 8 \text { adults, } \\ & 5 \text { skulls. } \end{aligned}$		acuminatus.					
			acuminat. 3 adults, 2 skulls.	audax: 2 adults, 1 skull.								
	Min. Max. mm . mm.				Min. Max. mm. mm.		Min. Max. mm. mm .		Min. Max. mm. mm .		Min. Max. mm. mm .	
			20.2	21.7	20.9	23	22			21.2		
			16.7	17.5		18.2	17.8			16.8		
				10.2	9.9	10.7	10.5			10		
case			8.8	9.1	8.8	9.7	9.4			9.3		
" zygomatic width			10.6	11	10.9	11.7	11.4	11.7		11.2		
" maxillary width		8.6	7.8	8.2	8.1	8.6	8.7	8.7		8.5		
across nasal swellings. across cingula of		6.2	5.7	6	6.2	6.9	6.2	6.2		6		
canines to front of			5.5	5.8	6.2	6.7	6.3	6.7		6		
Mandible, to front of incisors.		15.8	14.6	15.2	14.8	16	15.7	16		14.8		
L'pper teeth, e-m ${ }^{3}$. .		8.8	8.1	8.6	8.4	8.9	8.8	8.8		8.2		
Lower teeth, c-m3. .		9.5	8.8	9.2	9	9.8	9.5	9.6		9		
Ears, length, inner margin	18.7	19	16.7	19	19	21.5	18.5	18.8	18	19		
- greatest breadth.	14.3	14.3	14	15	16	17.2	14	14.5	14	14.5		
Nose leaves, total length	14	16	13	14.6	15	16.8	14		14	14.8		
Horse-shoe, greatest breadth.	8.2	8.3	8	8.5	9.6	10.2	8.2	8.7	8.1	א. 2		
Forearm	51	51.2	45.2	49	49	52.8	48.5	51	47.	49.5		
Pollex ${ }^{\text {a }}$ -	9.1	10	8.8	9.5	9	11	8.7	10	9.5	9.5		
3rd digit, metacarpal	35.2	36.8	32	34.2	35	38.3	35	36.5	33.7	35.2		
- ist phalanx	15.2	16.3	13	14.8	13.8	15.8	14.7	16.2	15	15		
- 2nd phalanx	20	21	17.5	19.3	18.2	21.5	19.8	20.7	17.5	20		
4th digit, metacarpal.	37.2	3 N	32.5	35.8	36	39.3	36	38.7	35.1	38.3		
- 1 st phalanx	11	11.7	8.7	10.2	9.3	10.8	10	11.8	9.7	10.5		
sth - 2nd phalanx	13	13.6	11	12	12.2	13.8	12	13	12	13		
5th digit, metacarpal	37.5	38.3	33	35.8	36.2	39.3	36	38.7	36	$3 \times .8$		
- tst phatanx	12.2	12.7	10	11.2	10.8	11.8	11.2	12.8	11.5	11.8		
- 2nd phalanx	13.7	14.6	11.7	12.8	11.7	14	13.2	13.6	13	13.5		
Tail.	25.2	26.5	21.5	24	23	26.5	25	25.2	21.7	23.5		
Lower leg . -	22.5	22.5	19.7	22	20.6	23.2	21	23	21	21.7		
Foot, with claws . .	10.8	11	10.2	11.5	10.3	11.5	11	11.8	10.8	11		

14. Rhinoloplnus macrotis dolnmi, subsp. n.
a, b. Two 9 ad. (in alc.). Soekaranda, Deli, N. W. Sumatra. Collected by Dr. H. Dohrn. One specimen in the Genoa Museum, the other presented to the British Museum by Marquis G. Doria (no. 6.12.1.22). - Skulls of both specimens extracted. - Types of the subspecies.

Diagnosis - Similar to Rh. macrotis macrotis, but with broader horse-shoe.

Delails. - In three Rhe macrolis mucrolis, from Nepal (type locality) and Masuri, the hreadth of the horseshoe is 7...--8..) mm., in the two Rh. m. dohrni 9) and !9.3 mm. The cars in the sumatran race are apparently somewhat broader than in Himalayan specimens, lut in the former specimens they are in a bad state of preservation. The tibia in Rh. m . dohomi wonld seem to be a little shorter. The skull is similar to that of Rh. m . macrotis, but a trifle larger, as are also the teeth.

I doubt that that there is in any respect more than an arerage difference between Himalayan and Sumatran individuals of R Rh. macrotis; I therefore keep the latter distinct as a local race only:

Dentition as in Rh. m. macrotis: p_{3} in row (in a larger scries of skulls p_{3} will, no donth, be found occasionally more or less external in position) : p^{2} in row, with a comparatively well developed cusp, pointing inwarls; a narrow interspace between p^{2} and p^{4} (reminiscent of p^{3}, lost in all recent species).

1/finities. - The most conspicuous external peculiarities of Rh. macrotis are these: - the long and broal, ahnost parallelmargined (tongue-shaped) sella: the rather long and dense hairing in the front face of the sella; the low comerting process, starting from a point considerably below the summit of the sella; the long and consex-margined lancet; the large ears. - Some of these characters very strongly recall those of the primitive species of the lih. philippinensis group: the sella of macrotis might properly be described as that of a philippinensis deprived of its lateral expansions; the shape of the comecting process and lancet, as well as the enlargement of the cars point also towards relationship with philippinensis. - The skull is of the general shape chatracteristic of the most primitive species of Rhinolophus; the palatal bridge rather longer than usial. The dentition is quite primitive: P_{3} often situated in the thoth-row, or, if external, it has a tendency towards the row, or there is, at least, a distinct interspace between p_{2}, and p_{4}, reminiscent of the former position of p_{3} in the row; p^{2} with a comparatively well developed ansp and always situated in the tooth-row: the upper camine and p^{1} widely separated. - In short: Rh. macrotis is a type on a low level of exolution, which has no closer relatise, among living species, than the primitive forms of the $R / 2$. philippinensis group.

Rh, macrotis was hitherto only known from the Himalayas (Masuri, Nepal). It is therefore of much interest now to see the range of this species extended to Sumatra. After this there can of course, be no doubt that it will also be found in Indo China and the Malay Peninsula.

A second species of the macrolis type, Rh. hirsulus, K. And., differing by its still larger ears, longer tail, and slightly heavier skall, inhabits the Philippine Islands.

At a period when the passage for Mammals from Sonthern Asia to Africa, owing to different physiographic conditions, was much easier than now, the Rh. macrotis type spread into the Ethiopian region. There it is now represented by four species: Rh. aethiops, fumigatus, hildebrandti, eloquens (see below. muder Rh. fumigatus). Thus the whole area inhabited by this type of bat extends from the Philippines and Sumatra in the east, to Angola and Senegambia in the west.

Note on the Rhinolophi of Sumatra. - In lecember 190."., when writing a geographical review of the species and subspecies of Rhinolophus $\left({ }^{1}\right)$, the following forms were known to me from Sumatra: Rh. affinis superans, Rh. sumatranus, Rh. trifoliatus trifolialus. Dr. Dohrn's collections have added three species to this list, viz. Rh. stheno, Rh. refulgens, and Rh. macrotis dohrni. Of the six forms now on record from sumatra. four (Rh. stheno, Rh. affinis superans, Rh. refulgens, lih. trifoliatus trifoliatus) are common to this island and the Matay Peninsula; a fifth species (Rh. macrotis), as being known from the Himalayas and Sumatra, will no doubt also be found in the Malay Peninsula; the sixth (Rh. surnatranus) is as yet only recorded from Sumatra, but may, not improbably, also oceur on the adjacent continent. All this is evidence of the extremely close connection between the Rhinolophus fauna of Sumatra and that of the Malay Peninsula.

The Rhinolophi inhabiting the chain of islands rumning parallel to the south coast of Sumatra are still very imperfectly known; but so far as the evidence gots they seem to be more peculiar. Of the two forms I have examined from Nias, the one (Rh. circe) is allied to Rh. sumatramos, but apparently suffi-
ciently differentiated to bo recrarded a distinct species; the other is an indigenous race (Rh. trifoliatus niasensis) of a species otherwise inhabiting Sumatra, Borneo, the Malay Peninsula, Lower Siam, and Tenasserim. The only form known from Engano (Rh. calypso) is allied to Rh. sumatranus, but a distinct species.

Still more imperfect is our knowledge of the Rhinolophi inhabiting the northern continuation of the Mentawei chain, viz. the Nicobars and Andamans. Only two forms (altogether three specimens!) have been recorded: "Rh. andamanensis ", a bat of the Rh. affinis type, probalby rather near to Rh. affinis superans from the Malay Peninsula and Sumatia; and $R 7$. cognatus, which is also allied to a species (Rh. refulgens) occuring in the Malay Peninsula and Sumatra.

Measurements of Rhinolophus macrolis dohrni and macrotis.

	Rh. m. dohwni.		Rh. m. macrotis.	
	Sumatra. 2 adults. 2 skulls. Types.		Ilimalaya. 3 adults, 1 skull.	
	Min	Max.	Min.	Max.
	mm.	mm.	mim.	1111.
skull, total length to fronl of e .	18	15.2		17.5
" hasilar length to front of c	11.2	14.4		13.8
" mastoid width	S.S	8.5		S.8
* widtlr of brain case .	7.6	7.7		7.8
\% \%yromatic width.	S.2	8.2		8.2
" maxillary width . .	5.8	6		5.1
* across nasal swellings .	1.9	5		1.7
" across eingula of canines .	4	4		3.7
Mandible, to front of incisors. .	11.8	11.8		11.5
Tpper teeth, e-m ${ }^{5}$.	6.7	6.7		6.3
Lower teeth, e-m m_{3}.	7	7		6.8
Ears, length, inner margin	21.7	19		
- greatest breadtli .	19	19	15.5	16.5
Nose-leaves, total length .	11.7			
llorseshoe, greatest breadtlı . .	9	9.5	7.5	8.3
Forearm -	12.7	41	11	13
lollex - . . .	5.7	6		
3rd digit, metacarpal.	39.8	30	30.7	31.2
- 1st plaalanx	12	12.5	13.2	13.7
- ${ }^{\text {and platans }}$	15	15	15.8	
Ith digit, metacarpal.	31	31.3	32.2	32.2
- ist plialanx	8.5	9	8.9	9.3
- 2nd phalanx	9.5	111	10.5	11
5th rigit, metamapal.	31	31	31.7	32.8
- 1 st phalanx.	10	10.2	10.2	11
- zud phalanx	10	10	10.8	10.s
Tail	1s	18.7	17	15.5
lower leg.	16.2	17	17.5	15.8
Foot, wilh claws	$\times .2$	8.5	8.2	9.2

15. LEinolophns fimmišatus fimmigatus, Rüpr.
16. Rhinolophus fumigatus, Rüppell, Mus. Senck. Ill. pp. 132, 155. Type locality: Shoa. (Types examined.) Frankfurt Museum.
17. Rhinolophus macrocephalus, Heuglin, Reise in Nordost-Afrika 11. pp. 22.23. - Type locality: Adowa, Abyssinia. (Type examined.) Stuttgart Museum.
18. Rhinolophus ferrum-equinum (partim, not Schreb.), Dobson, Cat. Chir. Brit. Mus. p. 119.
19. Rhinolophus antinorii, Dobson, Ann. Mus. Civ. Genova (z) II. pp. 16-17. - Type locality: « Daimbi, Shoa ». Genoa Museum.
20. Rhinolophus fumigatus, Rüpp., Knud Andersen, Ann. \& Mag. N. H. (i) XIV. pp. $451-53$ (l Dec. 1904.) - Rh. macrocephalus and antinorii shown to be synonyms of $R h$. fumigatus.
21. Rhinolophus aethiops (uot Peters), Senna, Archivio Zoologico (Napoli) II. pt. 3, pp. 267-71; pl. XVIII. figs. 28-39. - Erythrea.
a. q ad. (in alc.) Asmara, Erythrea; Oct. 1892. Collected by Dr. V. Ragazzi. Genoa Museum. - Skull extracted.

Rh. fumigatus belongs to a small group of Ethiopian species, allied to Rh. macrotis, Hodgs. (Himalayas to Sumatra), and Rh. hirsutus, K. And. (Philippines), but on a much higher level of evolution than the Oriental species; in these latter P_{3} is always present, p^{2} always comparatively well developed and always situated in the tooth-row, and the wing-structure is quite primitive; in the Ethiopian species p_{3} and p^{2} are rudimentary, pushed out to the external side of the tooth-row, or completely lost, and the wing-structure is modified.

The Ethiopian representatives of this group are these four: (1) Rh. aethiops, Pet., known from Damaraland and Angola, and characterised (as compared with Rh. fumigatus, the only species with which it can be confused) by having, as a rule, a rudimentary p_{3} and p^{2}; further by its rather broader cranial rostrum, hroader horse-shoe, and slightly longer tail. - (2) Rh. fumigatus fumigatus, Rüpp., from Somaliland, Alyssinia, and Erythrea, characterised by having, as a rule, completely lost p_{3} and p^{*}; further by its rather narrower cranial rostrum, narrower horse-shoe, and slightly shorter tail. In British East Africa this form is replaced by the smaller Rh. fumigatus exsul, K. And. It is of some importance to notice that the small p^{2} is not
aloogys wanting in lill. fumigatus; I have had the opportunity of examining eight specimens of the typical form; in one (a yommish individual, cotype of $R h$. macrocephalus) an exeredingly minnte p^{2} is present on both sides, situated quite on the extermal aspect of the maxillary bone; the same is the case in the Asmama specimen (adult, teefh almost unworn) sent from the Genoa Museun; in Senna's figure of an Erythrea skull (1. s. c. figs.. 36 and 37) I find not only a p^{2} but even a p_{3}; this is the only instunce known to me of the presence of a rudimentary P_{3} in Rh. fumigalus. - (3) Rh. hildebrandti, Pet., from Mazoe to Kenya, at once distinguished by its very large size; p_{3} is only orcasionally wanting, p^{2} as a rule present. - (4) Rh. eloquens, K. And., apparently contined to Uganda, in size intermediate between $R h$. fumigatus and hildebrandli, with P_{3} almosi always completely lost, and p^{2} still more reduced in size than in hildelrandti.

Rh. ferrum-equinum is of practically the same size as Rh. fumigatus; p_{3} is very often, p^{2} not rarely lost, and whenever these small premolars are present, they are external; in so far there is some resemblance between the two species, and this is, no doubh, the reason why Peters regarded them as very closely relats (1), and Dohson (in 1878, l. s. c.) even as inseparahle. But they are in many respects fundamentally different: - The skull of fumigatus (and allied Ethopian species) is at once distinguished by its very high and abruptly projecting nasal swellings and stronger sagittal crest; as a consegnence of these two peculiarities the postnasal depression (hetween the nasal swellings and the front of the sagittal crest) is much deeper than in ferrum-equinum; the cranial rostrum is somewhat narrower, the oecipital portion of the skull slenderer; the cars hroader scarcely attenuated below the tip, the tip itself blunter; the sella considerably broader, less pandurate, and its front face densely covered with rather long hairs; the posterior connecting prosess lower and more rom thed off; the indiess of the third, fouth, and fifth metacarpal are, respectively, fi92, 726 , and 7 伴, whereas in ferrum-equimum they are 64, 791, and 743, i. e. the peenliar. shorfoning of the third metacarpal in ferram-equinum is not

[^3]found in fumigatus; the proximal phalanges of the digits are comparatively shorter; the tail much shorter. The similarity in dentition is simply due to the fact that both species are on a very high level of evolution, but ferrum-equinum is an OrientalPalacarctic offshoot of the Rh. simplex group, fumigatus an Ethiopian representative of the $R h$. macrotis group, the similarity in dentition, therefore, an instance of convergence, not indicative of true relationship.
16. Rhinolophus euryotis aruensis, subsp. n.
a. It ad. (in alc.). Aru Islands. Collected by V. Rosenberg. Received from Dr. Jentink. Genoa Museum. Type of the subspecies.

The smallest race of Rh. euryotis.
Rh. e. aruensis comes very near to Rh. e. timidus, from Batchian, but the skull is a trifle smaller and slenderer, the mandible shorter; the teeth will probably prove to average smaller. Also externally Rh. e. aruensis is very similar to the Batchian race; this latter, as compared with Rh. e. euryotis and proestans, is chiefly characterised externally by its narrow horse-shoe and rather small ears; in both respects Rh. e. aruensis accords with Rh. e. timidus, but the forearm, the pollex, the phalanges of the third, fourth and fifth digits, and the foot are smaller. For details see the table of measurements p. 36.

I year ago ('), when working out the series of Rh. euryotis in the collection of the British Museum, I distinguished three races, viz. - Rh. e. timidus, from Batchian, characterised chiefly by the narrower horse-shoe and rather slenderer skull; Rli.e. euryotis, from Amboina, with broad horse-shoe and rather more heavily built skull; and Rh. e. prostans, from the Key Islands, which marks the extreme in the size of the horse-shoe and the width of the skull and nasal swellings. From this it will be observed that, passing from Batchian in the north, through Amboina, to the Key Islands in the south, there is an increase in the size of the horse-shoe and skull, and it might therefore be
expected that the Aru representative of this type of bat would either be identical with its nearest geographical neighbour, Rh. e. prostans, or perhaps exhibit the peculiarities characteristic of this latter race in a still more exagremated degree. The true fact, as shown above, is quite different: Rh. e. amensis is much more similar to the Batchian than to the Kiey Island race, so that beginning with Rh. e. proestans there is a "fillingr off" in the size of the horse-shoe and skull both northwards, through Amboina to Batchian, and eastwards to the Aru Islands. Thus the races occupying the periphery of the known area of Rh. euryotis are more alike than the geographical neighbours, Rh. e. proestans and aruensis.

Measurements of Rhinolophus eurgolis.

	timidus. 3 adults, 3 skulls.		euryotis. $\sigma^{2} \mathrm{ad}$.	praestans. $\sigma^{7} \mathrm{ad}$. туре.	arnensis. Q ad. Type.
	$\begin{aligned} & \text { Min. } \\ & \text { mim. } \end{aligned}$	Max. mm.	mm,	mm.	nmi.
skull, lotal length to front of c . " basilarleng th to front			25.1	25.4	23.6
\% of $\begin{gathered}\text { mastoid width . . . }\end{gathered}$			20.5 11.7	${ }_{12}^{20.8}$	18.8
" width of brain-case	10.4	10.1	11.7 10.8	12	11.1 10.2
- zygomatic width.	11.8	12.2	12.2	12.8	11.7
" maxillary width . .	8.9	${ }_{6}^{9} 9$	8.7	9.8	8.8
" across nasal swellings	6.8	6.9	6.8	7.2	6.7
nines.	65	6.7	6.2	7.2	6.5
Mandible, to front of incisors	17.1	17.5	18	18	16.3
Upper teeth, $\mathrm{c}-\mathrm{m}^{5}$.	9.7	9.7	10.2	11.2	9.5
Lower teeth, ${ }^{\text {c-mars, longth, inner nargin }}$	${ }_{20}^{10.5}$	10.5	11. 22.8	${ }_{11}^{11}$	10
- Vars, length, inner margin	${ }^{20.5}$		122.8	23 18	21.8 18.2
Nose-leaves, total leng thi.	17		17.5	19	
Ilorse-shoe, greatest breadth	10.2	10.7	11.8	13	10.7
Forearm	55	57.2	56.8	58	53.6
Pollex	11.3		11	12.2	9.8
3rd digit, metacarpal.	$3 \times .2$	40.2	40.3	10.8	39.5
- 1st phalanx.	16.2	16.8	17.2	17.2	11.3
- 2 nd phatanx	21	25.2	21	2	23
4th digit, metacarial.	38.8 $10 . \mathrm{S}$	41.2 11	11 11.7	42.5 11.2	40.2 9.8
	10.4 13.8	11 16	11.7 14.8	11.2	13.8
5 th digit, metacarpal.	10.3	11.7	11.5	13.2	10
- 1st plialanx.	19.3	13.1	13.1	12.8	11.5
Tail. 2nd phalanx	13.4 15.5		13 20	13.7 21.5	118
tower leg	$2 . .7$	27.8	2	20	25.5
Foot, with claws. . . .	13.2		13.2	13	11.5

17. Myotic dryax, sp. n.

Abstract

a, b. ot ad., Q ad. Port Blair, s. Audaman; August 1891. Received from Prof. E. H. Giglioli. Genoa Museum. - Cotypes of the speries; the one in the Genoa Museum, the other presented by Marpuis G. Doria to the British Museum (no. 6.12.1.31).

Diagnosis. - Apparently allied to Myotis adversus Horsf., but cranial rostrum lower, p^{3} (middle upper premolar) in row, outer margin of ear-conch more deeply and abruptly emarginated above, and foot markedly smaller. Forearm (two specimens, the types) $38.0 \mathrm{~B}-39.8 \mathrm{~mm}$.

Skull. - Of the skull of the type specimen of Horsfield's M. adversus, from Java (a skin in alcohol, Brit. Mus. no. 79. 11. 21. 123) only the front half, with the tooth-rows complete, has been preserved, and no other examples of this species from Java are available for comparison. Judging from this skull fragment, the skulls of M. adversus and dryas are probably very nearly of egual size, but the rostrum of M. dryas is considerably lower. both in front and, especially, posteriorly, and the bony palate is a little narrower; height of rostrum from alveolar border level of front of m^{1}, in M. adversus 3.8 mm ., in M. dryas about $\mathrm{B}^{3} \mathrm{~mm}$.; maxillary width, externally, across antero-external corners of $\mathrm{m}^{3}-\mathrm{m}^{3}$, in M. adversus 6.8 mm ., in M. dryas $6.1-6.3 \mathrm{~mm}$.

Teeth. - In M. dryas the cusps of the bifid inner upper incisor are almost of equal length (vertical extent), in M. adversus the outer is decidedly shorter than the inner cusp; in the skulls of both specimens these teeth are practically unworn. In M. dryas p^{3} (middle upper premolar) is situated in the tooth-row, with bur a very slight tendency towards the lingual side, p^{2} and p^{1} therefore quite separated, and p^{3} distinctly visible from without; p^{3} in cross section at base (coronal aspect) equal to, or a little more than, half the area of p^{2}; in M. adversus p^{3} is situated completely internal to the tooth-row, not visible from without, p^{2} and p^{4} in contact, and p^{3} in cross section at base equal to about $\frac{1}{3}$ of p^{2}. Also p_{3} is in M. dryas less reduced in size; in cross
section at base equal to about $\frac{2}{3}$ of ρ_{2}, in M. adversus searcely $\frac{1}{2}$ of P_{2}; in both species P_{3} is completely in row.

Ear. - Outer margin of rar-conch in M. dryas considerably more decply and abruptly emarginated above, than in M. adversus, the upper half of the ronch therefore narmwer; tip rounded. Ears not quite reaching the tip of the muzzle when laid forwards.

Tragus straight, attaining its greatest wilth far below the middle of the inner margin, tip narrow and subacutely pointed; inner margin practically straight from base to tip; outer margin above the basal notch (the deep noteh opposite the base of the inner margin) in its lower two thirds convex, in its upper third flatly concave; the whole of the outer margin very finely serrate: the tip of the tragus does not quite reach the middle of the inner margin of the ear-conch.

Foot. - Markedly smaller than in M. adversus: length $9.8-10 \mathrm{~mm}$., against 11.8 in the Java species.

General size. - Externally M. dryas is apparently a trifle smaller than M. adversus: forearm (1wo specimens, the types) $38.0-39.8 \mathrm{~mm}$., as against 41.3 in the type of M. adversus. The difference in the length of the toothrows is infinitesimal: upper teeth, c-m3 , :3.9-6 mm. in M. diyas, 6.3 mm . in M. adversus.

Other external characters. - Calcar very long, bordering $5 / 7$ of the distance from foot to tail vertebre. Posterior margin of interfemoral, between tip of calcar and tail. fringed with hairs. Last tail vertebra projecting beyond membrane. Wings from base (one specimen) or middle (the other) of metatarsus.

Affinities. - The general characters of M. dryas assigns it a place in the "subgenus" Leuconoe" as defined by Dolson in his Catalogue (p .28 z) : calcar very long, interfemoral forming a very acute angle in the centre of its free margin behind, tail projecting by the last vertebra from the membrane; foot rather strong, though proportionally less so than in the majority of species placed by Dobson in this section. Its nearest known ally seems to be the species with which I have compared it here, M. adversus.

Remark. - This is the first record of a species of Myotis from the Andamans. The occurrence of the gemes in these islands was, of course, to be experted.

Measurements of Myolis dryas and adeversus.

18. Chaerephon joliorensis, Dobs.
1873. Molossus (Nyctinomus) Johorensis, Dobson, Proc. Asiat. Soc. Bengal, Jan. 1873, pp. 22-23.
1874. Nyctinomus (Chaerephon) Johorensis, Dobs., Dobson, Journ. Asiat. Soc. Bengal. XLIII. pt. II. no. 2, p. 144 (17 Oct. 1874).
1876. Nyctinomus johorensis, Dobs., Dobson, Mon. Asiat. Chir. pp. 183-84, text-fig. (head in upper view), pp. 202-3.
1877. Nyctinomus johorensis, Dobs., Dobson, Proc. Zool. Soc. London 1876, pp. 726-28, text-fig. 5 (copied from Mon. Asiat. Chir., l. s. c.).
1878. Nyctinomus johorensis, Dobs., Dobson, Cat. Chir. Brit. Mus. p. 432.
a. σ^{π} ad. (in alc.). Soekaranda, Deli, N. W. Sumatra. Collected by Dr. H. Dolırn. Genoa Museum.

The trpe , in the Calcutta Musem, of this very remarkable speries is from Johore, Malay Poninsula. The individual ohtained by Dr. Dohrn is of much interest as being only the secomd specimen on record, and as showing the range of the species to extend to Sumatra.

The skull and dentition of Ch. johorensis were hitherto undeseribed, the affinities of the speecies therefore not quite clear.

Skull. - So similar, in general shape and even in size, to that of Ch. plicatus, Buch. Ham. (${ }^{1}$), as to differ only in points of very subordinate importance: - the upper aspect of the rostrum is decidedly flatter, in plicatus markedly convex; the sagittal and lambdoid crests less prominent, and the former not produced so far forwards (individuals of the same age, of johorensis and plicatus, have been compared); the facial foramen, which is situated directly in front of the anterior point of the sagritial crest, is, owing to the shortness of this crest in johorensis, more backwards in position than in plicatus; the anterior nares are not directed so much upwards as in plicatus; the palate is sliglitly narrower (as, on the whole, the skull is perhaps a trifle slenderer). The premaxillary region as in plicatus (no inter-premaxillary space; incisive foramina small and rounded; \&e.).

Teeth. - Number and general characters of the teeth as in Ch. plicatus: $\frac{2}{4}$ incisors, $\frac{2}{2}$ premolars. Tpper incisors considerably shorter (vertical extent), and stouter at hase, than in plicalus, hut otherwise not differing; upper eanines shorter; anterior upper premolar smaller; the principal cusp (cusp : $)^{\text {) }}$) of posterior upper premolar shorter (not so much projecting beyond the level of the molar cusps); molars quite as in plicatus. Lower incisors as in plicatus (lateral much slenderer than median pair); lower canines shorter (compare upper canines); anterior lower premolar lower and markedly smaller than in plicatus: cross section at hase in johorensis rather smaller, in plicatus larger, than that of posterior premolar. - All these details, it will easily be seen, indicate only a small difference in the relative size of the front tereth, and can be summarised in these few words: the upper incisors, upper and lower canines, upper premolars, and
(1) The skull of Ch. plicatus with which I have compared that of Ch. johorchsis is of a Java specimen (σ^{7} ad., teeth unworn), Brit. Mus. no. 46. 4. 21. 21.
anterior lower premolar are in johorensis comparatively shorter or smaller than in plicatus.

Frontal box. - A subtriangular groove hetween the ears. about $: 3 \mathrm{~mm}$. broad and $: 3 \mathrm{~mm}$. long. A deep transverse land connecting the anterior margins of the ears, in front of the groove; the upper border of this band is subtriangularly raised in the middle; this median, triangularly projecting portion of the band is convex on the front aspect, hollow on the posterior aspect, and fits like a lid to the groove; tufts of long hairs in the front part of the bottom of the groove, and on the posterior aspect of the lid near its base. The animal can fold the upper half of the earconch downwards; in doing so, the connecting band (and consequently the lid) is drawn forwards, disclosing the groove; in the erect position of the ears, the groove is covered by the lid. This frontal box in certain respects recalls a frontal apparatus recently described by me in the Phyllostome genus Micronycteris (${ }^{1}$), but is more complicated in structure. Its function is, no doubt, the same as that of the frontal sac in many species of Hipposiderus; this sac has no " lid ", but its " lips " can be opened or closed ad libitum, and the bottom of the sat is, like the groove in Ch. johorensis, furnished with a uft of long hairs. projecting through the aperture of the sac. - It should be remembered that the specimen of Cl. johorensis obtained by Dohrn is a male, as is also the type in Calcutta. Females of this species being as yet unknown, it remains uncertain, whether they possess a frontal box, or, if so, whether it is of the same size and structure as in the males.

Affinities. - Ch. johorensis is closely related to Ch. plicatus, Ch. jobensis, and allied species. The only essential difference in the skull is the more flattened rostrum in johorensis, a peculiarity which is probably a consequence of the development of a complicated frontal apparatus in this species. The dentition is in all important respects the same. Apart from the frontal apparatus, there are scarcely more than two external points worth mentioning: the tragus is a little broader in joltorensis than in plicatus, but hardly more so than in jobensis; the fifth metacarpal would seem to be proportionately somewhat longer in

[^4]johorensis, its index being : 396, as against :34:3 in plicatus and jobensis. In shom, the only striking differenes between Ch. johorensis and C/w. plicalus (and alliess) is: the development of a very remarkable fromtal box, and the flatere cranial rostrum resulting therefirom.

19. Mormopterus doriate, sp. n.

a. 0^{7} ad. (in alr.). sockaranda, Deli, N. W. Sumatrit. Cullected by Dr. H. Holn'n. Genoa Museum. - Type of the species.

Diagnosis. - A small «Nyctinomus» (sensu lato, as in Dolson's Catalogne), with $\frac{2}{6}$ incisors, ${ }_{2}^{1}$ premolars, and very strong supraorbital crista; with large gular sac, the front margin of the ear's quite straight, the fifth metacarpal equal to about $\frac{2}{3}$ the length of the third; and inhabiting Sunatra. - Forearm 38 mm.

Details and Remarks. - The new Sumatran species of Mormopterus to be described here belongs to a small section of the genus which till now was known onl!y from the Mascarenes, Madagascar, and Port Natal. This section, characterised by the species having $\frac{2}{6}$ incisors, $\frac{1}{2}$ premolars, and a gular sac, numbered hitherto two species, M. acetabulosus Comm. (Mascarenes, Nadagascar, Port Natal) and M. jugularis Pet. (synonym: Nyctinomus albiventer Dols.; Madagascar) (1). M. acelabulosus has a distinct emargination in the front margin of the ear-conch, below the tip (see figure in M. B. Akad. Berlin 1881, plate, fig. 1), whereas in M. jugularis the front margin of the car is straight (l. e. fig. 2). M. doriae is in this as in most other respects similar to M. jugularis, and on a comparison with this latter species the suljoined description is hased: -
M. doriae accords with M. jugularis, - in the general shape of the skull; in the number and structure of the teeth: in the presence of a gular sac; in having the front margin of the ears quite straight; in short: in all the more important cramial. dental and external characters, even in the general size.
(1) M. norfoliensis Gray has $\frac{2}{4}$ incisors, nut $\frac{2}{6}$ as slated by loloson (fatalogne 1. 439): it helongs 10 a wide-spread section of the gemus characterised hy the species laving $\frac{2}{4}$ incisors and $\frac{2}{2}$ juemolars.

It differs from M. jugularis in the following partionlars: The lower aspect of the hasis cranii (basioccipital in front, basisphenoidemm, presphenoidemin) is distinctly keeled along the median line; in jugularis plan: the brain-mse and rostrum are proportionally broader, the greater widh of the latter boing chiefly due to the more strongly developed and more prominent supratorbital crests; the inter-premaxillary space is rather wider. The upper canines, though of the same vertical extent as in jugularis, are somewhat heavier at base; the anterior lower premolar is larger: rather more than $2 / 3$ the height, in juguluris about half the height, of the posierior premolar. The gular sac is enormonsly developed, 7.3 mm . wide in front, and (i mm. deep (thus proportionally still larger than in acetabulosus); in jugularis it is very small: width in front about 3 mm ., depith about 1.3 mm . The front margins of the ears touch each other in the middle line (in so far the ears are inter-connected); in jugularis the margins are distinctly separated. The lower leg is somewhat longer: 19.3 mm., as against $10.3 \ddot{-11} \mathrm{~mm}$. in jugularis.

The colour of the single specimen is unsuitable for description. the whole that can be safely said being that the fur is dark on the upperside (apparently with lighter basis), greyish heneath.

In the table below I give measurements of the type of M. doriae and, for comparison, of a male and female of M. jugularis (Brit. Mus. nos. 89. 3. 1. 31-32).
M. doriae needs no closer comparison with M. acetabulosus, which has some cranial and dental characters of its own, has (as said above) the front margin of the ear-conch distinctly emarginated below the tip, and is a markedly smaller species. The only respect in which it closely approximates the Sumatron species is the strong development of the gular sac.

The interest of M. doriae is not only that it is an IndoMalayan representative of a group hitherto known from Madagascar and S. E. Africa only; it lies still more in the fact that it is, as shown by the brief description above. so closely related to a Malagasy species as to differ only in trivial details.

I have named this hat in honour of the Marquis Giacomo Doria, who has always so generously placed his intimate knowledge of Chiroptera and the rich collections of the Museun under his charge at the service of specialists.

Measurements of Chaerephon johorensis, and Mormopterus doriae and jugularis.

	Chaerephon johorensis.	Mormopterus dorias.	Moranulerus jugularis.
	Sumatra. $\sigma^{21} \mathrm{ad}$.	Sumatra. 0^{7} ad. туpe.	Betsileo, Madag. o' ad. Q ad.
Skull, total length to front of inc. * basilar length to front of inc. - mastoid width " width of brain-case ; zygomatic width " maxillary width \# across tips of anteorb. pre. * across cingula of canines	mm.	mm.	mm . mm.
	20.5	17.2	17
	16.6	15.1	14.6
	10.8	10.1	9.8 8.3
	9.7 11.8	8.7	8.3
	8.5	7.2	7.2
	6.8	7.5	6.8
	5	5	4.8
Mandible, to front of incisors	13.8	12.5	12.2
Ipper teeth, $\mathrm{c}-\mathrm{m}^{3}$ Lower teeth, $\mathrm{c}-\mathrm{m}_{3}$. Ears, length, anter margin - grealest breadth.	7.2	6.5	6.2
	7.8	6.9	6.7
	21	15.2 14.8	14.814 .3
$\underset{\text { Forearm }}{\text { Pollex }}$	47	38	38.2 36.3
	11	8.5	8 7 7.5
3rd digit, metacarpal.1st phalanx-2nd phalanx	44	37.2	36 34
	19.8	14.3	14.313
	18.8	11.8	$12 \quad 11$
4th digit, metacarpal. . . .	43.5	35	$34.8 \quad 32$
- 1 st phalanx . .	15.8	12.2	$12 \quad 11.5$
5th digit, metacarpal . . .	11.7	8.2	8.8 7.8
	28	23.2	22.821 .8
5th digit, metacarpal- ${ }^{\text {1st phalanx }}$:2nd phalanx	11.6	9	9.2 8.2
	4.5	4.2	41
Tail	41.7	30	$34 \quad 33.8$
	16.2	12.5	11 10.5
Fool, with claws	12.8	9.8	98.8

Inden of technical names.
(remminatus (Rhimolophtis) pp. 27-29. centralis (lliprosiderus) pp. 17, 18-20.
adversus (Myotis) pp. 37-39.
arthiops (Rhimolophuts) p. 33.
rffinis (Rhimolophus) p. 26.
albirenter (Mormopterus) p. $42 . \quad$ Mryas (Myotis) p. 37.
angolensis (IIipposidlerus) pp. 19, 20. eloqnens (Ihinotophus) p. 34.
antinorii (Rhinolophus) p. $33 . \quad$ engatus (IIpposiclerns) pp. 8, 9.
aruensis (Rhinolophus) p. 35. euryotis (Rhinolophms) pp. 3і)-36.
rular (Rhinolophus) pp. 28-99. exsul (Rhinolophus) p. 33.
bicornis (Hthpositlerms) p. $12 . \quad$ ferrum-equimtm(Rhinolophns)pp.26,34. bormeensis (Rhinolophus) p. 25. fumigatus (Rhinolophus) p. 33. eaffer (Ilipmisilerns) pp. 11, 16, 18-20. gracilis (llipmosiderus) p. 12. calypso (Lhinolophus) pp, 28-29. guineensis (llippositerus) pp, 17, 18-20.
circe (Rhinolophus) pp. 27-29.
dohr'ni (Rhimolophus) p. 99.
doriae (Mormopterus) p. 42.
dryos (Myotis) p. 37.

hildebrandti (lihinolophus) p. 34. refulgens (lhinolophus) p. 26.
johorensis (Chaprephon) pp. 39-42, 44. rouxi (Rhinoloplus) p. \mathbf{Q}^{5}.
juguluris (Mormopterus) pp. 42-4. schucieleri (lliposialerus) p. 21.
Itakatica (llipposiller"s) p. 9. stheno (Rhinolophus) p. 24.
macrocephatus (Ihimolopluss) p. 33. sumutramus (lihinolouhus) pp. 27-29.
mervotis (hlimolophus) pp. 30-39. stueratls (Rhimolophus) p. 26.
masoni (Hipposiderus) pp. 6,9. tephrus (Hipmosiderus) pp. 12-16, 18-20.
petersi (Rhimolophus) p. $97 . \quad$ timidus (Rhinolophtis) pp. 35-36.
pruestans (lihimolophus) pp. 35-36. truncatıs (IIhinolophus) p. 23.

[^0]: ${ }^{(1)} H$. galeritus, auct. plurim.; but the type specimen of I. gileritus (in the British Museum) seems to me quite a different bat; I therefore, for the present, use the name H. labuanensis, Tomes, for the small Bornean species with a frontal sac and two supplementary leaflets. All the small kasteru species of Hipposiderus hadly need a careful revision.

[^1]: (${ }^{1}$) Proc. Zool. soc. London 1905. 11. 11), 133-34. 136 (17 Oct. 1905).
 $\left(^{2}\right)$ l'roc. V. S. Nat. Mus. XXLX. no. 1440. 11). 657. 659 (\% March 1906).

[^2]: 1roc. U. S. Nat. Mus. XXiX, no. 1410 , 1!. 657-59 (7 March 1thkj).
 (2) I'roc. \%ool. Sox. London 1905, II. p. 133 (17 Oct. 1905),

[^3]: (1) MBS. Akad. Berlin 1N71, p. 311.

[^4]: (1) Ann. \& Mag. N. II. (7) XVII. p. 52; July 1906.

